Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 12: 1347219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726233

RESUMO

Background: Osteoporosis is becoming more common worldwide, imposing a substantial burden on individuals and society. The onset of osteoporosis is subtle, early detection is challenging, and population-wide screening is infeasible. Thus, there is a need to develop a method to identify those at high risk for osteoporosis. Objective: This study aimed to develop a machine learning algorithm to effectively identify people with low bone density, using readily available demographic and blood biochemical data. Methods: Using NHANES 2017-2020 data, participants over 50 years old with complete femoral neck BMD data were selected. This cohort was randomly divided into training (70%) and test (30%) sets. Lasso regression selected variables for inclusion in six machine learning models built on the training data: logistic regression (LR), support vector machine (SVM), gradient boosting machine (GBM), naive Bayes (NB), artificial neural network (ANN) and random forest (RF). NHANES data from the 2013-2014 cycle was used as an external validation set input into the models to verify their generalizability. Model discrimination was assessed via AUC, accuracy, sensitivity, specificity, precision and F1 score. Calibration curves evaluated goodness-of-fit. Decision curves determined clinical utility. The SHAP framework analyzed variable importance. Results: A total of 3,545 participants were included in the internal validation set of this study, of whom 1870 had normal bone density and 1,675 had low bone density Lasso regression selected 19 variables. In the test set, AUC was 0.785 (LR), 0.780 (SVM), 0.775 (GBM), 0.729 (NB), 0.771 (ANN), and 0.768 (RF). The LR model has the best discrimination and a better calibration curve fit, the best clinical net benefit for the decision curve, and it also reflects good predictive power in the external validation dataset The top variables in the LR model were: age, BMI, gender, creatine phosphokinase, total cholesterol and alkaline phosphatase. Conclusion: The machine learning model demonstrated effective classification of low BMD using blood biomarkers. This could aid clinical decision making for osteoporosis prevention and management.


Assuntos
Densidade Óssea , Aprendizado de Máquina , Osteoporose , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Osteoporose/diagnóstico , Idoso , Algoritmos , Inquéritos Nutricionais , Modelos Logísticos , Máquina de Vetores de Suporte
2.
Artigo em Inglês | MEDLINE | ID: mdl-38521445

RESUMO

The MARK2 gene, coding microtubule affinity-regulating kinase or serine/threonine protein kinase, is an important modulator in organism microtubule generation and cell polarity. However, its role in the metamorphosis of insects remains unknown. In this study, we found a conserved miRNA, miR-7-5p, which targets MARK2 to participate in the regulation of the larval-pupal metamorphosis in Galeruca daurica. The dual luciferase reporter assay showed that miR-7-5p interacted with the 3' UTR of MARK2 and repressed its expression. The expression profiling of miR-7-5p and MARK2 displayed an opposite trend during the larval-adult development process. In in-vivo experiments, overexpression of miR-7-5p by injecting miR-7-5p agomir in the final instar larvae down-regulated MARK2 and up-regulated main ecdysone signaling pathway genes including E74, E75, ECR, FTZ-F1 and HR3, which was similar to the results from knockdown of MARK2 by RNAi. In contrast, repression of miR-7-5p by injecting miR-7-5p antagomir obtained opposite effects. Notably, both overexpression and repression of miR-7-5p in the final instar larvae caused abnormal molting and high mortality during the larval-pupal transition, and high mortality during the pupal-adult transition. The 20-hydroxyecdysone (20E) injection experiment showed that 20E up-regulated miR-7-5p whereas down-regulated MARK2. This study reveals that the accurate regulation of miRNAs and their target genes is indispensable for insect metamorphosis.


Assuntos
Besouros , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Besouros/genética , Metamorfose Biológica/genética , Ecdisterona/farmacologia , Larva/metabolismo
3.
Pest Manag Sci ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385645

RESUMO

BACKGROUND: Galeruca daurica has become a new pest on the Inner Mongolia grasslands since an abrupt outbreak in 2009 caused serious damage. As a pupa indicator during insect metamorphosis, the early response gene of the ecdysone signaling pathway, Broad-Complex (Br-C), plays a vital role in the growth and development of insects. MicroRNAs (miRNAs) are small non-coding RNAs which mediate various biological activities, but it is unknown whether and how Br-C is regulated by miRNAs. RESULTS: Temporal expression profiles revealed that miR-285 and Br-C basically displayed an opposite trend during larval-adult development, and Br-C was sharply up-regulated on the last day of final-instar larvae while miR-285 was significantly down-regulated. Both dual-luciferase reporter assay and miRNA-mRNA interaction assay indicated that miR-285 interacts with the coding sequence of Br-C and represses its expression. Not only overexpression but also downexpression of miR-285 led to the failure of larval to pupal to adult metamorphosis. In addition, both overexpression of miR-285 and silence of Br-C inhibited the expression of Br-C and other ecdysone signaling pathway genes, including E74, E75, ECR, FTZ-F1, and HR3. On the contrary, suppressing miR-285 obtained opposite results. Further experiments showed that 20-hydroxyecdysone down-regulated miR-285 and up-regulated Br-C and above-mentioned genes, whereas juvenile hormone alalogue (JHA) resulted in opposite effects. CONCLUSION: Our results reveal that miR-285 is involved in mediating the metamorphosis in G. daurica by targeting Br-C in the ecdysone signaling pathway. miR-285 and its target Br-C could be as a potential target for G. daurica management. © 2024 Society of Chemical Industry.

4.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686016

RESUMO

Cancer immune escape is associated with the metabolic reprogramming of the various infiltrating cells in the tumor microenvironment (TME), and combining metabolic targets with immunotherapy shows great promise for improving clinical outcomes. Among all metabolic processes, lipid metabolism, especially fatty acid metabolism (FAM), plays a major role in cancer cell survival, migration, and proliferation. However, the mechanisms and functions of FAM in the tumor immune microenvironment remain poorly understood. We screened 309 fatty acid metabolism-related genes (FMGs) for differential expression, identifying 121 differentially expressed genes. Univariate Cox regression models in The Cancer Genome Atlas (TCGA) database were then utilized to identify the 15 FMGs associated with overall survival. We systematically evaluated the correlation between FMGs' modification patterns and the TME, prognosis, and immunotherapy. The FMGsScore was constructed to quantify the FMG modification patterns using principal component analysis. Three clusters based on FMGs were demonstrated in breast cancer, with three patterns of distinct immune cell infiltration and biological behavior. An FMGsScore signature was constructed to reveal that patients with a low FMGsScore had higher immune checkpoint expression, higher immune checkpoint inhibitor (ICI) scores, increased immune microenvironment infiltration, better survival advantage, and were more sensitive to immunotherapy than those with a high FMGsScore. Finally, the expression and function of the signature key gene NDUFAB1 were examined by in vitro experiments. This study significantly demonstrates the substantial impact of FMGs on the immune microenvironment of breast cancer, and that FMGsScores can be used to guide the prediction of immunotherapy efficacy in breast cancer patients. In vitro experiments, knockdown of the NDUFAB1 gene resulted in reduced proliferation and migration of MCF-7 and MDA-MB-231 cell lines.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , RNA-Seq , Análise da Expressão Gênica de Célula Única , Metabolismo dos Lipídeos , Ácidos Graxos , Microambiente Tumoral/genética
5.
J Cancer Res Clin Oncol ; 149(13): 12145-12164, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37428249

RESUMO

BACKGROUND: Immunotherapy, represented by immune checkpoint inhibitors, has made significant progress in the treatment of cancer. Numerous studies have demonstrated that antitumor therapies targeting cell death exhibit synergistic effects with immunotherapy. Disulfidptosis is a recently discovered form of cell death, and its potential influence on immunotherapy, similar to other regulated cell death processes, requires further investigation. The prognostic value of disulfidptosis in breast cancer and its role in the immune microenvironment has not been investigated. METHODS: High dimensional weighted gene coexpression network analysis (hdWGCNA) and Weighted co-expression network analysis (WGCNA) methods were employed to integrate breast cancer single-cell sequencing data and bulk RNA data. These analyses aimed to identify genes associated with disulfidptosis in breast cancer. Risk assessment signature was constructed using Univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses. RESULTS: In this study, we constructed a risk signature by disulfidptosis-related genes to predict overall survival and immunotherapy response in BRCA patients. The risk signature demonstrated robust prognostic power and accurately predicted survival compared to traditional clinicopathological features. It also effectively predicted the response to immunotherapy in patients with breast cancer. Through cell communication analysis in additional single-cell sequencing data, we identified TNFRSF14 as a key regulatory gene. Combining TNFRSF14 targeting and immune checkpoint inhibition to induce disulfidptosis in tumor cells could potentially suppress tumor proliferation and enhance survival in patients with BRCA.


Assuntos
Neoplasias da Mama , Imunoterapia , Morte Celular Regulada , Microambiente Tumoral , Análise de Célula Única , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , RNA/genética , Humanos , Feminino , Inibidores de Checkpoint Imunológico/uso terapêutico , Redes Reguladoras de Genes , Regulação Neoplásica da Expressão Gênica , Análise de Sequência de RNA
6.
Cancers (Basel) ; 14(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35326714

RESUMO

Thymomas and thymic carcinomas (TC) are malignant thymic epithelial tumors (TETs) with poor outcome, if non-resectable. Metabolic signatures of TETs have not yet been studied and may offer new therapeutic options. Metabolic profiles of snap-frozen thymomas (WHO types A, AB, B1, B2, B3, n = 12) and TCs (n = 3) were determined by high resolution magic angle spinning 1H nuclear magnetic resonance (HRMAS 1H-NMR) spectroscopy. Metabolite-based prediction of active KEGG metabolic pathways was achieved with MetPA. In relation to metabolite-based metabolic pathways, gene expression signatures of TETs (n = 115) were investigated in the public "The Cancer Genome Atlas" (TCGA) dataset using gene set enrichment analysis. Overall, thirty-seven metabolites were quantified in TETs, including acetylcholine that was not previously detected in other non-endocrine cancers. Metabolite-based cluster analysis distinguished clinically indolent (A, AB, B1) and aggressive TETs (B2, B3, TCs). Using MetPA, six KEGG metabolic pathways were predicted to be activated, including proline/arginine, glycolysis and glutathione pathways. The activated pathways as predicted by metabolite-profiling were generally enriched transcriptionally in the independent TCGA dataset. Shared high lactic acid and glutamine levels, together with associated gene expression signatures suggested a strong "Warburg effect", glutaminolysis and redox homeostasis as potential vulnerabilities that need validation in a large, independent cohort of aggressive TETs. If confirmed, targeting metabolic pathways may eventually prove as adjunct therapeutic options in TETs, since the metabolic features identified here are known to confer resistance to cisplatin-based chemotherapy, kinase inhibitors and immune checkpoint blockers, i.e., currently used therapies for non-resectable TETs.

7.
Hum Cell ; 32(3): 334-342, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30805847

RESUMO

The incidence of thyroid cancer detection is continually improving worldwide with the spread of diagnostic imaging and surveillance. Although we have made great progress, there are still unknown mechanisms of papillary thyroid cancer. We found that UNC5B-AS1 is a potential oncogene in thyroid cancer. Therefore, our study aimed to investigate the biological functions of the lncRNA UNC5B-AS1 in papillary thyroid cancer. As a result, RNA-seq data on primary papillary thyroid cancer (PTC) in the TCGA database were obtained. RT-qPCR was performed to evaluate the expression levels in thyroid tissue. We then analysed the expression level of UNC5B-AS1 and its association with clinicopathologic characteristics in the TCGA database. We downregulated UNC5B-AS1 using small interfering RNA and carried out assays of cell proliferation, colony formation, migration and invasion to explore the function of UNC5B-AS1 in PTC cell lines (TPC1 and BCPAP). These results suggested that the lncRNA UNC5B-AS1 was significantly upregulated in both the TCGA cohort and our tissue cohort. Upregulated UNC5B-AS1 correlated with lymph node metastasis (P < 0.001), tumor size (P = 0.002) and histological type (P = 0.013). We also achieved an area under the ROC curve (AUC) of 93.2% for our validated cohort, which was consistent with the AUC of 94.5% for the TCGA cohort, for differentiating between PTC tissues and normal tissues. Downregulating UNC5B-AS1 expression at the RNA level significantly inhibited cell proliferation, colony formation, migration, and invasion in PTC cell lines (TPC1 and BCPAP). This study demonstrated that the lncRNA UNC5B-AS1 plays an important role in tumourigenesis and metastasis of PTC and may be a potential therapeutic target for PTC.


Assuntos
Carcinogênese/genética , Movimento Celular/genética , Proliferação de Células/genética , Expressão Gênica , Oncogenes , Receptores de Superfície Celular/fisiologia , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Adulto , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Humanos , Metástase Linfática/genética , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Invasividade Neoplásica/genética , Receptores de Netrina , Câncer Papilífero da Tireoide/terapia , Neoplasias da Glândula Tireoide/terapia
8.
Oncol Lett ; 16(1): 105-112, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29928391

RESUMO

Thyroid cancer is the most common malignancy of the endocrine organs. In order to further understand the tumorigenesis and progression of papillary thyroid carcinoma (PTC), the present study performed whole transcriptome sequence analysis. It was found that Cbp/p300-interacting transactivators with glutamic acid [E] and aspartic acid [D]-rich C-terminal domain 1 (CITED1) was a novel potential PTC-associated gene in thyroid cancer. The expression level and clinicopathological features of CITED1 were then assessed in The Cancer Genome Atlas (TCGA) database. The expression of CITED1 was knocked down and the biological function of CITED1 in PTC cell lines was examined. The results showed that upregulated CITED1 was associated with lymph node metastasis (P=0.006) and clinical stage (P=0.003). In order to differentiate PTC tissues and normal tissues, an area under the curve was constructed of a receiver operating characteristic of 91.3% for the TCGA cohort and 85.3% for a validated cohort. The downregulated expression of CITED1 significantly inhibited cell proliferation, colony formation, migration and invasion in the PTC cell lines. The present study demonstrated that CITED1 is important in the tumorigenesis and metastasis of PTC and may be a potential therapeutic target in PTC.

9.
Biochem Biophys Res Commun ; 501(3): 636-642, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29738772

RESUMO

Although the combination of chemotherapy and surgical resection has effectively increased the survival rate of colorectal cancer patients in recent decades, acquired drug resistance is still a problem that leads to treatment failure. Dihydroartemisinin (DHA), a semisynthetic derivative of artemisinin, has recently been reported to show anticancer effects against numerous types of cancer, including colorectal cancer. This study showed that DHA exerted a strong anticancer effect against several colorectal cancer cell lines. We also found that p53 knockout colorectal cancer HCT116 cells (HCT116 TP53-/-) were not sensitive to 5-fluorouracil (5-FU) treatment, unlike wild-type HCT116 cells. Interestingly, co-treatment with DHA could effectively restore the anticancer effect of 5-FU against HCT116 TP53-/- cells, which manifested as the inhibition of proliferation and induction of reactive oxygen species (ROS)-mediated apoptosis and was accompanied by the upregulation of B-cell lymphoma 2 (BCL-2) and downregulation of the BCL-2-associated X protein (BAX). These findings suggested that DHA could effectively sensitize cells to 5-FU through ROS-mediated apoptosis and the alteration of the BCL-2/BAX expression ratio, which indicated that this may be one of the mechanisms of the DHA-promoted 5-FU anticancer effect.


Assuntos
Antimaláricos/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Artemisininas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Sinergismo Farmacológico , Células HCT116 , Humanos , Espécies Reativas de Oxigênio/metabolismo
10.
Cell Biosci ; 8: 7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441192

RESUMO

BACKGROUND: MAPT-AS1, a long non-coding RNA, has not been reported in any previous research about its function in cancers. In this study, we investigated the role of MAPT-AS1 in the progression and paclitaxel resistance in breast cancer, and the regulation between MAPT-AS1 and its natural comparable sense transcripts MAPT. METHODS: We analysed the breast cancer patients' clinical information and explored the function of MAPT-AS1 by gain- and loss-of function assays in vitro and in vivo. The regulation between MAPT-AS1 and MAPT was confirmed by gene expression analysis and rescue assays. To verify the hypothesis that MAPT-AS1 and MAPT might form a duplex structure, we performed RT-PCR assays on RNA after α-amanitin treatment. RESULTS: By analysing the breast cancer patients' clinical information from the TCGA database, we found that ER-negative patients with younger age (< 60), larger tumors (≥ 2 cm), metastatic lymph nodes and stages (III-IV) had higher expression of MAPT-AS1. MAPT-AS1 is correlated with the cell growth, invasiveness and paclitaxel resistance by regulating its natural comparable sense transcripts MAPT in ER-negative breast cancer cells. The result revealed that MAPT-AS1 overexpression could partially protect the MAPT mRNA from degradation, while MAPT-AS1 knockdown decreased the stability of MAPT mRNA. Meanwhile, MAPT knockdown decreased the expression of MAPT-AS1 mRNA. MAPT-AS1 expressed coordinately with MAPT in breast tumor tissues. CONCLUSION: Our study is the first to report a novel lncRNA MAPT-AS1 in human cancer. ER-negative patients with younger age (< 60), larger tumors (≥ 2 cm), metastatic lymph nodes and stages (III-IV) had higher expression of MAPT-AS1. MAPT-AS1 is correlated with the cell growth, invasiveness and paclitaxel resistance in ER-negative breast cancer cells through antisense pairing with MAPT. MAPT-AS1 may serve as a potential therapeutic target in ER-negative breast cancers.

11.
Onco Targets Ther ; 11: 37-46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29317832

RESUMO

BACKGROUND: Thyroid cancer is the most commonly reported endocrine malignancy, and its increased incidence has been the highest in all human tumors in recent decades. To investigate the mechanism of papillary thyroid cancer (PTC) occurrence and progression, we performed RNA sequencing and found an upregulated gene, LAMB3. However, the biological function of LAMB3 is still not clear. MATERIALS AND METHODS: We analyzed LAMB3 expression using The Cancer Genome Atlas (TCGA) database and hypothesized LAMB3 to be a gene associated with PTC. To test this hypothesis, we collected 89 pairs of thyroid nodules and adjacent normal thyroid tissues (56 pairs of PTCs, 33 pairs of benign thyroid nodules). Afterward, we performed real-time quantitative polymerase chain reaction (RT-qPCR) to investigate LAMB3 expression in thyroid nodule patients, and then analyzed clinicopathologic features. We performed proliferation, colony formation, migration, and invasion assays to determine the function of LAMB3 in PTC. RESULTS: We demonstrated that LAMB3 plays oncogenic roles in PTC. The relative expression of LAMB3 is significantly upregulated in PTC compared with matched thyroid normal tissues in validated cohort and TCGA cohort (P<0.001). We also checked area under the curve (AUC of receiver operator characteristic [ROC]) of 97.3% for validated cohort and 90.1% for TCGA cohort to differentiate PTC tumors from normal tissues. In clinicopathologic feature analysis, we found that upregulated LAMB3 is closely related to lymph node metastasis (P=0.018). Furthermore, knockdown of LAMB3 inhibited the proliferation, colony formation, migration, and invasive capacity of PTC. CONCLUSION: This study indicated that LAMB3 is a gene associated with PTC.

12.
Oncol Lett ; 14(4): 4122-4134, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28943919

RESUMO

The association between central lymph node metastasis (LNM) and risk factors, including the presence of the BRAF mutation, BRAFV600E, in patients with papillary thyroid cancer (PTC) requires further investigation. A potent risk factor that can indicate LNM in different histological subtypes of PTC and in different preoperative central lymph node statuses also requires further research. A total of 287 patients with PTC who accepted thyroidectomy were included in the present study. Clinicopathological data of these patients were reviewed to examine the risk factors for central LNM through univariate and multivariate analyses. Overall, BRAFV600E in patients with cN0 (subclinical nodal disease) and cN1 (other than cN0) PTC was associated with central LNM. However, multivariate analyses demonstrated that BRAFV600E was not an independent risk factor in patients with cN1 or cN0 PTC. For patients with classical variant PTC (CVPTC), BRAFV600E was independently associated with central LNM. However, on further analysis, the association was only significant in patients with cN0 CVPTC. For patients with follicular variant PTC (FVPTC) or aggressive variant PTC (AVPTC), the BRAFV600E mutation rate was not significantly different between patients with and without central LNM. In conclusion, BRAFV600E was an independent risk factor for central LNM overall in patients with PTC and in patients with CVPTC, particularly in patients with cN0 CVPTC. However, BRAFV600E was not an independent risk factor for patients with FVPTC and AVPTC. Therefore, BRAFV600E provides varied clinical significance in different histological subtypes and preoperative central lymph node status.

13.
Onco Targets Ther ; 9: 7039-7045, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27895496

RESUMO

BACKGROUND: Luminal subtype breast cancer accounts for a predominant number of breast cancers. Considering the heterogeneity of the disease, it is urgent to develop novel biomarkers to improve risk stratification and optimize therapy choices. Long non-coding RNA (lncRNA) represents an emerging and understudied class of transcripts that play a significant role in cancer biology. Growing knowledge of cancer-associated lncRNAs contributes to the development of molecular markers for prognosis evaluation and gene therapy. MATERIALS AND METHODS: Three pairs of primary luminal subtype breast cancer tissues and adjacent non-cancerous tissues were collected and sequenced. EBseq algorithm was used to identify differentially expressed lncRNAs. RNA sequencing data from The Cancer Genome Atlas (TCGA) database were used to validate the robustness of our RNA-seq results. Kaplan-Meier and Cox regression analyses were utilized to assess the association between the lncRNAs and overall survival of patients in TCGA cohort. RESULTS: A total of 796 lncRNAs were significantly dysregulated in luminal subtype breast cancer, including 436 upregulated and 360 downregulated lncRNAs. Among them, FAM83H antisense RNA 1 (FAM83H-AS1) was the most upregulated lncRNA, whereas GSN antisense RNA 1 (GSN-AS1) was the most downregulated lncRNA. Moreover, we proved that the high expression level of FAM83H-AS1 indicated unfavorable prognosis not only in luminal subtype breast cancer but also in all subtype breast cancers. To the best of our knowledge, this is the first report indicating that FAM83H-AS1 was involved in luminal subtype breast cancer and was an independent prognostic indicator. CONCLUSION: Our study provides a rich resource to the research community for further identifying lncRNAs with diagnostic and therapeutic potentials and exploring biological function of lncRNAs in luminal subtype breast cancer.

14.
Gene ; 591(2): 471-7, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27380926

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with unfavorable outcome. It is urgent to explore novel biomarkers and potential therapeutic targets in this malignancy. Increasing knowledge of long noncoding RNAs (lncRNAs) significantly deepens our understanding of cancer biology. Here, we sequenced eight paired TNBC tumor tissues and non-cancerous tissues, and validated significantly differentially expressed lncRNAs. Gene ontology (GO) and pathway analysis were used to investigate the function of differentially expressed mRNAs. Further, potential core lncRNAs in TNBC were identified by co-expression networks. Kaplan-Meier analysis also indicated that breast cancer patients with lower expression level of rhabdomyosarcoma 2 associated transcript (RMST), one of the potential core lncRNAs, had worse overall survival. To the best of our knowledge, it was the first report that RMST was involved in breast cancer. Our research provided a rich resource to the research community for further investigating lncRNAs functions and identifying lncRNAs with diagnostic and therapeutic potentials in TNBC.


Assuntos
RNA Longo não Codificante , RNA Neoplásico , Neoplasias de Mama Triplo Negativas/genética , Biomarcadores Tumorais , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...